TABLE OF CONTENTS

	Declaration	ii
	Certificate	iii
	Acknowledgement	iv
	Preface	v
	Table of contents	vi
	List of figures	viii
	List of tables	xii
	CHAPTER 1: INTRODUCTION	1
1.1	Introduction	1
1.2	Gas Sensors	3
1.3	Conducting Polymers (CPs)	11
1.4	CPs in Gas Sensing	13
15	Use of Organic-Inorganic Hybrid Nanocomposites in Gas	14
1.5	Sensing	
1.6	PANi as a Conducting Polymer	18
1.7	Problem Statement	22
1.8	Objectives of the Research	23
1.9	Organisation of the Thesis	24
	CHAPTER 2: SYNTHESIS AND	26
	CHARACTERIZATION OF CSA DOPED PANi-Ta ₂ O ₅	
	NANOCOMPOSITE	
2.1	Introduction: Synthesis process of conducting polymers	26
2.2	Experimental: Preparation of CSA doped PANi-Ta ₂ O ₅	32
	nanocomposite	
2.3	Characterization of CSA doped PANi-Ta ₂ O ₅ nanocomposite	34

2.4	Instrumentations used	49
2.5	Results and Discussion	49
2.6	Chapter Conclusions	58

CHAPTER 3: FABRICATION OF CSA DOPED PANI-59Ta2O5 NANOCOMPOSITE BASED59CHEMIRESISTIVE THIN-FILM SENSOR AND59STUDY OF ITS NO2 GAS SENSING BEHAVIOUR59

3.1	Thin film deposition	59
2.0	Chemiresistive Gas Sensors and their Gas Sensing	68
5.2	Mechanism	
2.2	Experimental – Fabrication of CSA doped PANi-Ta ₂ O ₅	81
5.5	based NO ₂ gas sensor	
3.4	Results and Discussion	83
3.5	Chapter conclusions	97

CHAPTER 4: DEVELOPMENT OF CSA DOPED PANi-	98
Ta ₂ O ₅ BASED ORGANIC FIELD EFFECT	
TRANSISTORS FOR NO ₂ GAS SENSING	

4.1	Introduction: Organic Field Effect Transistors	98
4.2	Basic operation of an OFET	109
4.3	Experimental	115
4.4	Results and Discussion	118
4.5	Chapter conclusions	132

CHAPTER 5: CONCLUSIONS AND FUTURE SCOPE 134

5.1	Conclusions	134
5.2	Future Scope of the Work	138

Bibliography	140
Appendix 1: Abbreviations Used	162
Appendix 2: Biodata	163
Appendix 3: Transcript of the Ph.D. course work	164
Appendix 4: List of publications	165

LIST OF FIGURES

Figure No.	Figure Caption	Page No.
1.1	A morning time with smoky haze in New Delhi	3
1.2	Sensor's working principle	4
1.3	General structure of a typical conductivity gas sensor	6
1.4	Schematic of a SAW sensor waveguide	7
1.5	Schematic of electrochemical sensor	8
1.6.a	Gas sensing principle of optical sensors	9
1.6.b	Simplified schematic of a NDIR optical gas sensor	10
1.7	Chemical structure of some commonly used	12
	conducting polymers	
1.8	Oxidation states of PANi	19
1.9	Chemical structure of PANi	19
1.10	Protonation and deprotonation of PANi	20
1.11	Use of PANi based nanocomposite for gas sensing	21
2.1	SEM micrographs of different PANi nanostructures	29
2.2	Oxidation and formation of PANi	30
2.3	Photograph of PANi-ES	32
2.4.a	Schematic of SEM imaging	35
2.4.b	Schematic of TEM imaging	35
2.5	Schematic of various atomic energy levels	38

2.6.a	Geometric condition for diffraction	39
2.6.b	Diffraction cones	39
2.7	Diffraction peak and different associated information	39
2.8	The waveform of electromagnetic spectrum	40
2.9	The electromagnetic spectrum	41
2.10	An ideal UV-Vis absorption spectrum	42
2.11	Spectra of benzene	43
2.12	Various molecular orbitals in carbon compounds	44
2.13	Relative energy levels of bonding and anti-bonding molecular orbitals	45
2.14	Electronic transitions of molecular orbitals caused by UV/Visible light	45
2.15	Interferogram	47
2.16	Conversion of interferogram signal to FTIR spectrum	47
2.17	Use of spectrometer to produce FTIR spectrum	48
2.18	A simple schematic of a spectrometer	48
2.19	SEM micrographs of PANi nanocomposites	50
2.20	TEM micrograph of PANi–Ta ₂ O ₅ -CSA40% and SAED pattern	52
2.21	XRD graphs of PANi–Ta ₂ O ₅ -CSA40%	53
2.22	UV-Vis Spectra of PANi nanocomposites	55
2.23	FTIR spectra of PANi nanocomposites	56
3.1	Electrodeposition technique	60
3.2	Steps in a dip coating process	62
3.3	Various stages of spin coating	64
3.4	Molecule interaction at air-water interface	65
3.5	Components and orientation of an amphiphile molecule	65
3.6	Langmuir monolyer spread on the water surface	66
3.7	Components of a thermal evaporation system	67
3.8	Schematic representation of thermal evaporation process	68

3.9	Schematic of chemiresistive thin-film gas sensors	70
3.10	Interstitial defects	75
3.11	Possible reaction mechanism between PANi and NO ₂	77
3.12	Fabrication steps in the preparation of the PANi-	81
	Ta ₂ O ₅ -CSA based thin-film sensor	
3.13	Schematic of the thin-film sensor for NO ₂ gas sensing	82
3.14	Schematic of in-house gas sensing setup for NO ₂ gas	84
	sensing	
3.15	Photographs of experimental setup used for gas	84
	sensing	
3.16	Possible formation of p-n heterostructure	87
3.17	Schematic of formation of CSA doped PANi-Ta ₂ O ₅	88
	nanocomposite	
3.18	Change in resistance of PANi-Ta ₂ O ₅ -CSA40% with	90
	respect to time towards 500 ppm of NO ₂ gas	
3.19	Graphs of sensor response (%) versus NO ₂	91
	concentration (ppm) of PANi nanocomposites	
3.20	Dynamic response plot of PANi-Ta ₂ O ₅ -CSA40%	91
3.21	Study of response time of PANi nanocomposites	93
3.22	Study of recovery time of PANi nanocomposites	93
3.23	Effect of relative humidity of the PANi sensor	94
3.24	Selectivity study of PANi-Ta ₂ O ₅ -CSA40% based	96
	sensor	
3.25	Stability study of the PANi-Ta ₂ O ₅ -CSA40% based	96
	sensor	
4.1	Schematic of MOSFET and OFET	100
4.2	Schematic of a field effect transistor	102
4.3	Schematic representation of different architectures of	104
	OFETs	
4.4	Different operation regimes of field effect transistors	111
4.5	Operating mechanism of p-type OFET	111
4.6	Energy band diagram of gate contact, insulator and the	112
	OSC of the OFET	
4.7	Representative current-voltage characteristics of an	113

	OFET	
4.8	Working conditions of OFET and its output	114
	characteristics	
4.9	Photograph of the spin coating machine used	116
4.10	Photograph of the plasma-enhanced chemical vapor	116
	deposition (PECVD) system	
4.11	Photograph of BC300 High Hind Vacuum box coater	116
4.12	Schematic of the PANi-Ta ₂ O ₅ -CSA40% based OFET	117
	device	
4.13	Photograph of the fabricated PANi-Ta ₂ O ₅ -CSA40%	118
	based OFET device	
4.14	Output characteristics of CSA doped PANi-Ta2O5	119
	based OFET	
4.15	Schematic of electrical connections of the PANi-	119
	Ta ₂ O ₅ -CSA based OFET	
4.16	Drain-source current (I_{DS}) plotted on log scale and	120
	square root of I_{DS} , $(I_{DS} ^{1/2})$ as a function V_{GS} of CSA	
	doped PANi-Ta ₂ O ₅ based OFET	
4.17	Transfer curve of CSA doped PANi-Ta ₂ O ₅ based	122
	OFET reproduced showing I_{ON} , I_{OFF} , V_{TH} and SS.	
4.18	AFM surface morphology of the CSA-PANi-Ta ₂ O ₅	125
	layer deposited on the PMMA layer	
4.19	In-house gas sensing setup for examining NO ₂ gas	126
	sensing properties of PANi-Ta ₂ O ₅ -CSA based OFET	
	device	
4.20	Output curves of PANi-Ta ₂ O ₅ -CSA based OFET to	127
	various concentrations of NO ₂	
4.21	Percentage variation of I _{ON} of PANi-Ta ₂ O ₅ -CSA based	127
	OFET to various concentrations of NO ₂	
4.22	Transfer curves of PANi-Ta ₂ O ₅ -CSA based OFET to	128
4.23	Change in threshold voltage and carrier mobility at different concentrations of NO-	129
4.24	Dynamic response of PANi-Ta ₂ O ₅ -CSA based OFET	130
4.25	Selectivity study of the PANi-Ta ₂ O ₅ -CSA based OFET	130

4.26	Subthreshold swing and trap density change with NO ₂ gas concentration	132

LIST OF TABLES

Table No.	Table Caption	Page No.
2.1.a	Sample Details- PANi	33
2.1.b	Sample Details- PANi nanocomposites	33
2.2	The electromagnetic spectrum and the respective wavelengths	41
2.3	FTIR analysis of PANi, PANi-Ta ₂ O ₅ and CSA doped PANi-Ta ₂ O ₅	58
3.1.a	Summary of sensor response for different types of sensing material and target gas	78
3.1.b	Examples of oxidizing and reducing analytes	78
4.1	Dimensions of the PANi-Ta ₂ O ₅ -CSA40% OFET device	117
4.2	Summary of electrical properties of CSA doped PANi-Ta ₂ O ₅ OFET	124
4.3	Summary of NO ₂ gas sensing properties of PANi- Ta ₂ O ₅ -CSA based OFET	131